UMERC

Clark School

UMERC News Story

Bookmark and Share

International Partnership Brings an Important Breakthrough in Fuel Cell Research

3D charge redistribution around the oxygen vacancy in BSCF perovskite with respect to neutral O atom. Blue and red isosurfaces (0.0025e/A3) correspond to excess and deficiency of the electron density, respectively. Oxygen vacancy (center) is surrounded by two B-metals - Co (top) and Fe (bottom), as well as four oxygen atoms from both sides.
3D charge redistribution around the oxygen vacancy in BSCF perovskite with respect to neutral O atom. Blue and red isosurfaces (0.0025e/A3) correspond to excess and deficiency of the electron density, respectively. Oxygen vacancy (center) is surrounded by two B-metals - Co (top) and Fe (bottom), as well as four oxygen atoms from both sides.

UMD researchers Dr. Yuri A. Mastrikov and Prof. Maija M. Kuklja in partnership with Max-Plank Institute?s researchers Prof. Eugene A. Kotomin and Prof. Joachim Maier have demonstrated by means of large scale computer modeling that the vacancy formation energy in (Ba,Sr)(Co,Fe)O3 complex perovskites is much smaller than in other perovskites which means orders of magnitude larger defect concentrations and thus fast oxygen transport in mixed electronic-ionic conductors for numerous applications. An article, First-principles modeling of complex perovskite (Ba1-xSrx)(Co1-yFey)O3-d for solid oxide fuel cell and gas separation membrane applications describing details of this work was published last week in Energy & Environmental Science.

Solid oxide fuel cells (SOFC) are promising devices generating energy in an environmentally friendly way, by a direct conversion of fossil and renewable fuels into electricity and high-quality heat. A major challenge in the SOFC improving is to reduce the operating temperature down to 500?600 C. This needs search of complex perovskites combining high O vacancy concentration (non-stoichiometry) and high vacancy mobility at moderate temperatures, as well as long-term cubic structure stability against transformation and degradation in polluted atmosphere. As we have demonstrated recently, the optimal strategy for developing new SOFC cathode should be based on the combination of key experimental data on oxygen incorporation into material and first-principles thermodynamics/kinetics of oxygen reduction and related processes. In this way, we were able to identify the atomistic mechanisms of key reactions for (La,Sr)MnO3 (LSM) with the emphasis on the rate-determining steps. Based on the present study, we plan to perform similar analysis for BSCF and related complex perovskites. This work is supported in part by NSF.

August 17, 2010


Prev   Next

Current Headlines

Dean Pines, Abts Featured in ASEE PRISM Magazine for Leading the Push for AP Course in Engineering

Whiting-Turner Lecture Series to Feature Chasen and Chowdhury

Nanopaper Featured in Nature Photonics News & Views

Save the Date: NanoDay, June 11 -- Poster Session, Plenaries, EM Workshops and More

The Science, Technology and Society Program Build More than Just Robots

UMD Project Management Symposium to Feature Army Corps Director

Tiny Origami Boxes Hold Big Promise for Hydrogen Energy Storage

Hu Honored by American Society for Engineering Education

Registration Open for UMD Project Management Symposium

Gibbons, Wu to Attend Shale-Gas Monetization Short Course and Workshop

News Resources

Return to Newsroom

Press Releases

Search News

Archived News

Events Resources

Events Calendar

 


Copyright 2013 University of Maryland